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ABSTRACT: 
The goal of this research is directed toward developing scientific and formalized physics-informed data-driven techniques 
toward accelerating the generation of both forward and inverse scaling laws that can be transferred across material 
systems or manufacturing processes to understand the fundamental linkages between processing and the properties of 
interest in metal additive manufacturing (AM). Among all metal AM processes, laser powder bed fusion (L-PBF) and 
laser directed energy deposition (L-DED) are extremely relevant to DoE-NE’s mission because of the portfolio of products 
DoE-NE caters to. Both L-PBF and L-DED offer distinct advantages over traditional manufacturing processes in reducing 
lead time and material usage as well as enabling the fabrication of complex geometries. For example, to fabricate heat 
exchanges with intricate channels, L-PBF would be ideal while for building large parts such as pressure vessels, laser-wire 
DED (LW-DED) would be more economical. For repairing legacy components or to fabricate functionally-graded parts, 
laser-powder DED (LP-DED) could be used. However, the qualification of the L-LBF and L-DED processes is expensive 
and time-consuming. One of the greatest impediments is the amount of experimentation or computational modeling data it 
takes to develop scaling laws for new material systems (e.g., SS316L, IN718, etc.), manufacturing processes (e.g., L-PBF, 
LP-DED, LW-DED, etc.), and manufacturing equipment (e.g., large vs. small build volume, etc.). The state-of-the-art 
methods to develop scaling laws rely on performing the necessary experiments and modeling calculations for each 
combination of the material, manufacturing process, and manufacturing equipment of interest to develop them from 
scratch. Additionally, a sparse amount of work exists to develop the inverse scaling laws. 

To address this critical requirement of generalizing both forward and inverse scaling laws across materials and 
manufacturing processes, I will start the investigation by blending the information obtained from high and low-fidelity 
simulation models as well as a limited amount of experimental data using probabilistic machine learning (ML) tools to 
develop a multi-fidelity (MF) surrogate. The MF surrogate will, thereafter, be used as a proxy to predict the desired 
properties (e.g., melt pool area, aspect ratio, etc.) as a function of process parameters at discrete time instants facilitating 
the design of temporal scaling laws as opposed to the current steady-state ones. Since I will use a probabilistic surrogate as 
opposed to a deterministic one, the scaling laws will be automatically associated with their uncertainties. Thereafter, I will 
use the emerging tools of transfer learning (TL) toward transferring the scaling laws across material systems and 
manufacturing methods. Finally, I will integrate the MF surrogate with an optimization framework to develop the inverse 
scaling laws and validate them via experimental demonstration. I will use two metallic alloys e.g., SS316L and IN718 as 
candidate materials and three manufacturing processes e.g., L-PBF, LP-DED, and LW-DED as candidate manufacturing 
processes. 

The proposed work will transform the way scaling laws are currently developed for structural materials relevant to nuclear 
engineering applications via AM. A multidisciplinary approach, at the crossroads of manufacturing, modeling, 
characterization, and machine learning certainly involves risk because of the complex interrelationships that define the 
problem. However, without such an approach, the current issues of using AM for building components with repeatability 
cannot be adequately addressed using simple process- structure-property relationships. I have been working on 
computational modeling and manufacturing for about seven years and machine learning for about four years, and I have 
developed unique capabilities in my laboratory to tackle this challenge. Moreover, Penn State, with its world-class 
facilities, is an ideal place to conduct this investigation. I am looking to extensively collaborate with DOE NE researchers 
to develop this framework where some data may come from a different equipment located at a different geographical location 
to demonstrate the efficacy, versatility, and robustness of the proposed framework. The project will involve two full-time 




